Home »

Ddr sdram

The meaning of «ddr sdram»

Double Data Rate Synchronous Dynamic Random-Access Memory (DDR SDRAM) is a double data rate (DDR) synchronous dynamic random-access memory (SDRAM) class of memory integrated circuits used in computers. DDR SDRAM, also retroactively called DDR1 SDRAM, has been superseded by DDR2 SDRAM, DDR3 SDRAM, DDR4 SDRAM and DDR5 SDRAM. None of its successors are forward or backward compatible with DDR1 SDRAM, meaning DDR2, DDR3, DDR4 and DDR5 memory modules will not work in DDR1-equipped motherboards, and vice versa.

Compared to single data rate (SDR) SDRAM, the DDR SDRAM interface makes higher transfer rates possible by more strict control of the timing of the electrical data and clock signals. Implementations often have to use schemes such as phase-locked loops and self-calibration to reach the required timing accuracy.[4][5] The interface uses double pumping (transferring data on both the rising and falling edges of the clock signal) to double data bus bandwidth without a corresponding increase in clock frequency. One advantage of keeping the clock frequency down is that it reduces the signal integrity requirements on the circuit board connecting the memory to the controller. The name "double data rate" refers to the fact that a DDR SDRAM with a certain clock frequency achieves nearly twice the bandwidth of a SDR SDRAM running at the same clock frequency, due to this double pumping.

With data being transferred 64 bits at a time, DDR SDRAM gives a transfer rate (in bytes/s) of (memory bus clock rate) × 2 (for dual rate) × 64 (number of bits transferred) / 8 (number of bits/byte). Thus, with a bus frequency of 100 MHz, DDR SDRAM gives a maximum transfer rate of 1600 MB/s.

In the late 1980s IBM had built DRAMs using dual-edge clocking feature and presented their results in the International Solid-State Circuits Convention in 1990.[6][7]

Samsung demonstrated the first DDR memory prototype in 1997,[1] and released the first commercial DDR SDRAM chip (64 Mb) in June 1998,[8][2][3] followed soon after by Hyundai Electronics (now SK Hynix) the same year.[9] The development of DDR began in 1996, before its specification was finalized by JEDEC in June 2000 (JESD79).[10] JEDEC has set standards for data rates of DDR SDRAM, divided into two parts. The first specification is for memory chips, and the second is for memory modules. The first retail PC motherboard using DDR SDRAM was released in August 2000.[11]

To increase memory capacity and bandwidth, chips are combined on a module. For instance, the 64-bit data bus for DIMM requires eight 8-bit chips, addressed in parallel. Multiple chips with the common address lines are called a memory rank. The term was introduced to avoid confusion with chip internal rows and banks. A memory module may bear more than one rank. The term sides would also be confusing because it incorrectly suggests the physical placement of chips on the module. All ranks are connected to the same memory bus (address + data). The chip select signal is used to issue commands to specific rank.

Related Searches

DDR3 SDRAM
DDR4 SDRAM
DDR2 SDRAM
DDR5 SDRAM
contact us full version